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Abstract. The diffraction of plane, cylindrical and spherical waves by a wedge is considered. 
Particular emphasis is placed on finding accurate and simple asymptotic field expansions 
which are valid in the transition regions as well as in the far field. The accuracy of previous 
diffraction coefficients for cylindrical and spherical waves is discussed and a more accurate 
derivation is presented. A new simple rational approximation of the resulting Fresnel 
integral is given and its special character is demonstrated. 

1. Introduction 

The problem of the diffraction of waves by a wedge has been the subject of extensive 
theoretical studies, using several techniques. The usual types of incident scalar waves 
considered in these studies are plane, cylindrical and spherical waves. The electric or 
magnetic dipole represents the most elementary source of electromagnetic waves 
whose diffraction by a wedge has been treated by many contributors. Good reviews 
of the work on the diffraction of these waves by a half-plane or a wedge are given in 
Rubinowics (1966), Bowman et a1 (1969) and Mohsen (1971). 

The major contribution to the theory of the asymptotic treatment of the solution, 
at distances far from the diffracting edge, is attributed to Pauli (1938). More recent 
contributions include the works by Hutchins and Kouyoumjian (1969) and Mohsen 
(1971). These asymptotic solutions have direct application in the theory of high- 
frequency diffraction by bodies of complex shapes with edges using the geometrical 
theory of diffraction GTD (Keller 1962). In particular, they increase the accuracy of 
the GTD solutions, extend the range of applicability of the theory and correct the 
contributions along the shadow and reflection boundaries (Kouyoumjian and Pathak 
1974). In view of the availability of several forms of the exact solution (Bowman et 
aZ1969), it is to be expected that the accuracy of the asymptotic development depends 
on the form used. A particularly convenient integral representation is used in this 
work and its advantage is explained. 

Usually, the accuracy of the deduced asymptotic expansions for cylindrical and 
spherical wave excitations is not as good as the corresponding plane-wave approxima- 
tions. A method is presented here which yields more accurate asymptotic expressions 
for these excitations and at the same time preserves the familiar expression of these 
expansions in terms of Fresnel’s integral. Also, a particularly useful rational approxi- 
mation of this integral is presented and its advantage is discussed. 

t A part of this work was presented at the URSI Meeting, Los Angeles, USA, June 1981. 
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2. Integral representation of the solution 

Consider a perfectly conducting wedge of exterior angle LY whose edge coincides with 
the z axis in a cylindrical coordinate (r, 4, z )  system. Let Uo denote the incident field 
which is given by 

U: = exp[-jkr cos(4 - CbO)] for a plane wave ( l a )  

U," = Hb2' (krl) for a cylindrical wave (1b) 

for a spherical wave ( I C )  U," = exp(-jky)/y y = r l+ (z -zo )  

where (ro, 40, zo)  are the source coordinates, r: = r2 + r; - 2rr0 cos(4 - 40) and a sup- 
pressed exp(jwt) time dependence is assumed. The total scalar field U due to the 
incident wave should satisfy the Helmholtz equation exterior to the wedge and the 
radiation condition in the far field beside having the correct edge singularity. A 
particularly convenient representation of U is given in the form (Oberhettinger 1958) 

(2) 

where the negative and positive signs correspond to the soft and hard boundary 
conditions, respectively. The function S ( 6 )  may be written as 

(3) 
where S1 represents the geometrical optics contribution and S2 is the diffraction term 
which may be written in the form (Oberhettinger 1958) 

2 2  2 

U = S(l4 - 401) 3= S(l4 + 401) 

s w  = s1w + s2(e) 

S z ( 6 )  = -(2a)-' E ( x ) [  V ( X ,  T - 6) + V ( X ,  T + 6)] dx (4) 

where the excitation function E ( x )  depends on the type of the incident field and is 
given by 

(5a)  

loom 

E&) = exp(-jkr cosh x)  

corresponding to the three cases of excitations given by equation (1). In equation (3, 
P: = r2 + r;+ 2rr0 cosh x. The pattern function V(x, 8 )  in equation (4) is given by 

(6) V(x, 6) = sin(.ns/cu)/[cosh(./~) -cos(T~/cY)]. 

This expression may also be written in the form (Whipple 1917) 

m = l  

3. Accuracy of the asymptotic expansion 

For large kr, the stationary-phase method may be employed in order to find the 
asymptotic expansion of the diffraction integral. The stationary-phase point is at x = 0. 
It is important to note that V(x, 8) decays as x increases and has an exponential 
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decay rate in the form exp(-m/a). Consequently, the effective range of x in equation 
(4) is at small values of x, especially for larger ( ‘ IT /cY) .  Thus, the major contribution 
is from the neighbourhood of x = 0 even in the near field. This is the reason for the 
high accuracy of the stationary phase result derived from the chosen solution form 
(Mohsen 1971) compared with the exact series solutions for plane-wave and cylin- 
drical-wave excitations. 

Usually, the accuracy of the asymptotic expressions derived for cylindrical- and 
spherical-wave incidence is not as good as the corresponding plane-wave approxima- 
tions. The reason is due to the asymptotic expansion which is usually performed for 
E ( x )  for the first two wave types prior to the application of the stationary-phase 
method. A more accurate approximation may be obtained following a particular type 
of expansion (Mohsen and Shafai 1981) which proved to be effective in similar 
situations. In particular, the function E ( x )  is expanded for small values of x in the 
form exp(-+x2) where + is to be determined in order to increase the accuracy of the 
expansion. 

Thus, for cylindrical wave incidence, let 

g(x) = Hb2’[k(r2+r i+2rro  cosh x ) ~ ’ ~ ]  exp($x2). (8) 

Expanding g ( x )  for small x, one obtains 

g ( x )  = H L ~ ’  [ k ( r  + ro)]+- H L ~ ’  [ k ( r  + ro)] -~ krroiL Hi2’ [ k ( r  + r o ) l ) x 2 + { .  . .}x4 . . . . 

Then, the coefficient of x2  vanishes upon taking 

2 2(r + r d  
(9) 

Y 

A further approximation may be performed upon invoking the assumption that 
k ( r  + ro) >> 1. In this case, equation (10) yields 

+ - jkrro / [2(r+ro) ] .  

The diffraction term &(e) may be written in the form 

where 

Upon neglecting terms higher than x2 in equation (9), we get from equations (8) and 
(9) 

E J X )  - ~ d ~ ’ [ k ( r + r ~ ) ]  exp(-+x2) (14) 

where $ is given by equation (10) or equation (1 1). The introduction of this approxima- 
tion in equation (13) and evaluation of the resulting integral yield 

I ( S )  - -cos t sgn t exp(jt2 +j97/4)~b’’ [ k ( r  + r o > ] ~ ( 5 ) / . / ;  (15) 

where 

t = 7r8/(2a) sgn t =sin t/lsin tl 6 = alsin tl[2krro/(r + r0)]”2/.rr 
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Cc, is given by equation ( l l ) ,  and the Fresnel integral F(5)  is defined by 
W 

F(5)  = I exp(-jt2) dt. 
5 

A similar analysis may be performed for spherical wave incidence. In this case, 

(17) 

E&) is approximated by 

E,(x)  = [exp( -jku)/  a ]  exp[ -jkrr0/ (2a )] 

and the corresponding diffraction integral is approximated by 

I ( S )  =-cos t sgn t exp(jp2 + j ~ / 4 ) [ e x p ( - j k a ) / a ] ~ ( ~ ) / J n  (18) 

where a 2 = ( r + r o ) ~ + ( ~ - z O ) 2  and p =a/s in  t/(2krr0/a)”*/~. 
Since F(0)  = Jrexp(- j~r /4) /2 ,  the above expansions are finite along the shadow 

and reflection boundaries. Besides, the discontinuity in the geometrical optics field 
at these boundaries is compensated by that in I ( S )  due to the discontinuity in sgn(t) 
at t = 6 = 0 .  

To test the accuracy of our approximate formulae, we compare the results with 
the series solution available for an H-polarised line source excitation (Bowman et a1 
1969). For a wedge with a = 200°, (bo = 20”, kro = 1 and (b = lo”, the error in both 
the field amplitude and phase is less than 5% for kr 3 9. 

4. Rational app:oximation of the Fresnel integral 

The frequent appearance of the Fresnel integrals in asymptotic diffraction theory, and 
their particular use at shadow and reflection boundaries, justify seeking a simple 
particular approximation for these integrals. Such an approximation is required to 
give reasonably accurate values at very small arguments, corresponding to the shadow 
and reflection boundaries, as well as for large arguments which are encountered in 
far-field analysis. 

Using the leading terms in the small and the large argument expansions of the 
Fresnel integral, and with the above objective in mind, a simple rational approximation 
may be written in the form 

~ ( 5 )  = [J,exp(-j.rr/4)/2 - 5  exp(-je2)1/(1 - 2j&. (19) 

This approximation yields the exact values at [ = 0  and gives the correct leading 
asymptotic term as 5 -* Co. When this approximate expression is compared with the 
tabulated values, the error is found to be less than 11% for 5 < 0.2 and [ 2 10. 

5. Discussion and conclusions 

The asymptotic diffraction of plane, cylindrical and spherical waves by a wedge has 
been investigated. The integral representation of the exact solution chosen has two 
basic advantages. One is that the representations for the three types of waves are 
similar and consequently the expected accuracy can be conveniently compared. The 
other advantage is that the pattern functions appearing in the integrands of the 
diffraction integrals has its major contribution, irrespective of the location of the field 
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point, from the neighbourhood of the stationary-phase point. The accuracy for the 
cylindrical- and spherical-wave excitations is improved via convenient exponential 
approximations of the source functions in the diffraction integral. 

More accurate rational approximations to the Fresnel integral than that derived 
in this work do exist (Luke 1969). However, the special form derived in this work 
has the advantage of being simple and particularly useful for far-field analysis without 
requiring special care on crossing the shadow and reflection boundaries. 
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